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Möbius Graphene Strip as Topologi
al InsulatorZ. L. Guo,1 Z. R. Gong,2 H. Dong,2 and C. P. Sun21S
hool of Physi
s, Peking University, Beijing, 100871, China2Institute of Theoreti
al Physi
s, The Chinese A
ademy of S
ien
es, Beijing, 100080, China(Dated: June 12, 2009)We study the ele
troni
 properties of Möbius graphene strip with a zigzag edge. We show thatsu
h graphene strip behaves as a topologi
al insulator with a gapped bulk and a robust metalli
surfa
e, whi
h enjoys some features due to its nontrivial topology of the spatial 
on�guration,su
h as the existen
e of edge states and the non-Abelian indu
ed gauge �eld. We predi
t thatthe topologi
al properties of the Möbius graphene strip 
an be experimentally displayed by thedestru
tive interferen
e in the transmission spe
trum, and the robustness of edge states under 
ertainperturbations.PACS numbers: 73.20.At,73.25.+i, 73.63.BdI. INTRODUCTIONBe
ause of the unusual properties and potential ap-pli
ations, topologi
al insulators have re
ently been un-der great fo
us both experimentally [1, 2℄ and theoreti-
ally [3, 4, 5, 6, 7, 8, 9℄. The topologi
al insulator sys-tem belongs to a novel 
ategory, possessing an insulatingbulk, with a gap in the energy spe
trum of propagat-ing ele
trons, whereas its surfa
e is metalli
. The edgestates promise su
h metalli
 feature and des
ribe the ele
-trons lo
alized on the surfa
e with energy levels lyingjust within the gap of the bulk [3℄. For many systems inthis 
ategory, the surfa
es are no longer 
ondu
tive whensome perturbations are applied. However, for some sys-tem with nontrivial topology, the edge states are robustunder perturbations. Su
h systems with robust metalli
surfa
es are referred to as topologi
al insulators [3℄.It is natural to imagine that those topologi
al featuresof ele
trons 
an be realized through nontrivial topologyin the 
on�guration spa
e of the system 
onsidered. Amost re
ent illustration is the tight binding model forele
trons hopping on a Möbius ladder [10℄. In this inves-tigation, observable e�e
ts of Möbius boundary 
onditionwere found for a �nite latti
e. Destru
tive interferen
eemerges from the transmission spe
trum to display thetypi
al topologi
al feature. It was proved that su
h de-stru
tive interferen
e 
an be explained in terms of a non-Abelian gauge �eld indu
ed by the nontrivial topology.However, su
h a novel nanostru
ture 
an not be regardedas a topologi
al insulator, be
ause this quasi-1D systemhas no edge states.In this paper, we study the ele
troni
 properties ofa Möbius graphene strip. We show that with a 2Dnontrivial topologi
al stru
ture, the Möbius graphenestrip [11, 12, 13, 14, 15, 16℄ with zigzag edges (seeFig. 1(b)) behaves as a typi
al topologi
al insulator sin
eit possesses robust edge states. It is noti
ed that thereis no edge state in su
h Möbius strip with an arm
hairedge, thus no su
h nontrivial topologi
al properties ap-pear. Our investigation will fo
us on the situation witha zigzag edge. Through analyti
 approa
hes, we �rst
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FIG. 1: (
olor online) (a) A zigzag graphene strip is s
hemat-i
ally illustrated in a 2D version with open boundary 
on-dition along y dire
tion. The white (bla
k) dots representsublatti
e A (B). The 3D version of the graphene strip withMöbius boundary 
ondition along the x dire
tion (ψa(b)(r) =
ψb(a)(er+Lex), where r = (x, y) and er = (x,−y)) and periodi
boundary 
ondition (ψa(b)(r) = ψa(b)(r+Lex)) are plotted in(b) and (
), respe
tively.predi
t that the robustness of the edge states is main-tained under perturbation with uniform ele
tri
 �eld inour dis
ussion. And we 
ompare the Möbius graphenestrip with a generi
 one whose edges turn to be insulatorsin the same ele
tri
 �eld. Besides, destru
tive interfer-en
e in the transmission spe
trum is found in the Möbiusgraphene strip, whi
h is 
aused by the non-Abelian gauge�eld. Based on this observation, we propose a possi-ble approa
h of quantum manipulation on the transportproperties of the Möbius graphene strip through a mag-neti
 �ux.
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2This paper is arranged as follows. In Se
. II, wegive an analyti
al des
ription of the edge states for thegeneri
 and Möbius graphene strip. Here the tight bind-ing Hamiltonian is used to model the graphene strip with�nite width. In Se
. III, a uniform ele
tri
 �eld is appliedto the generi
 and Möbius graphene strip as a perturba-tion. We 
ompare the energy bands of the edge states inthe generi
 and Möbius graphene strips under the uni-form ele
tri
 �eld. Robustness of the edge states in theMöbius graphene strip under su
h perturbation is demon-strated. And we prove the 
andida
y of Möbius graphenestrip as a topologi
al insulator. Additionally, in Se
. IV,we dis
uss the topology-indu
ed non-Abelian gauge �eldin the Möbius graphene strip and its observable e�e
ts infuture experiments. Besides, we propose a possible quan-tum manipulation me
hanism upon the Möbius graphenestrip through a magneti
 �ux. Finally, the 
on
lusion ispresented in Se
. V.II. EDGE STATES IN MÖBIUS GRAPHENESTRIPTo des
ribe the motion of ele
trons of graphene, weuse the tight binding model [17, 18℄,
H = −J

∑

〈i,j〉
[ψ†

a(ri)ψb(rj) +H.c.], (1)where ψa(ri)(ψb(ri)) annihilates an ele
tron on site ri ofsublatti
e A(B), and the sum is taken over the nearestneighbor sites 〈i, j〉 with 
orresponding hopping 
onstant
J . For the zigzag graphene strip with �nite width (N reg-ular hexagons in Fig. 1(a)) along y dire
tion, the y 
om-ponent of the spa
ial ve
tor r for A and B sublatti
esonly take a �nite number of values, e.g., y(a)

m = [3(N −
m)− 1]l/2 for sublatti
e A, and y(b)

m = [3(N −m)− 2]l/2for sublatti
e B. Here, l is the distan
e between nearestneighbors in the latti
e, and m = 0, 1, ..., 2N − 1. Usu-ally, it is assumed that the length of the graphene strip(M regular hexagons along x dire
tion, as in Fig. 1(a))is mu
h larger than the width, namely, M ≫ N , andperiodi
 boundary 
ondition is taken as
ψa(b)(r) = ψa(b)(r + Lex), (2)with L =

√
3Ml. Thus, it is proper to perform Fouriertransformation only for the x 
omponent of r upon the�eld operators of ele
trons as

ψa(b)(kx, y) =
1√
M

∑

x

ψa(b)(x, y)e
−ikxx, (3)and kx 
an be 
onsidered as 
ontinuous sin
e L is largeenough.For a zigzag graphene strip, there exist eigenstatesstrongly lo
alized on the edges of the strip with theirenergies lying exa
tly within the gap [19, 20, 21, 22℄,

1

N
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N-1

occupationFIG. 2: (
olor online) On the left is the s
hemati
 illustrationof the on-site ele
tron o

upation of an edge state with kx =
1.2π/d, d =

√
3l, in whi
h the size of ea
h 
ir
le represents themagnitude of the ele
tron o

upation on that latti
e site. Andthe right �gure displays the 
orresponding values of ele
trono

upation on sublatti
e A (blue 
ir
les) and B (red 
ir
les)respe
tively.whi
h are 
alled edge states. A straightforward 
al
ula-tion gives approximate edge states
|Ψ±(kx)〉 = D†

e±(kx) |vac〉 , (4)whi
h are de�ned by the 
orresponding annihilation op-erators
De±(kx) =

1√
2
[Ae(kx) ±Be(kx)], (5)where the 
olle
tive operators

Ae(kx) =
1√
Skx

2N−1∑

m=0

pm
kx
ψa(kx, y

(a)
m ), (6a)

Be(kx) =
1√
Skx

2N−1∑

m=0

p2N−1−m
kx

ψb(kx, y
(b)
m ) (6b)respe
tively represent parts of the edge states lo
alizedon the edges, as shown in Fig. 2. Here,

pkx
= −2 cos

(√
3kxl

2

) (7)represents the de
ay rate of the single ele
tron on-siteo

upation probability along y dire
tion. And
Skx

=
1 − p4N

kx

1 − p2
kx

(8)is the normalization 
onstant. |Ψ±(kx)〉 are the anti-bond and bond states with respe
t to the states
A†

e(kx) |vac〉 and B†
e(kx) |vac〉. They 
orrespond to theeigenenergy

Ee±(kx) = ±J
p2N

kx
(1 − p2

kx
)

1 − p4N
kx

. (9)
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(a) (b)FIG. 3: (
olor online) S
hemati
 illustration of the Möbiusgraphene strip (a) before the unitary transformation W and(b) after the unitary transformationW . After the transforma-tion, the strip is divided into two independent pseudo strips(red ↑ and blue ↓ in (b)) with no intera
tion between ea
hother. Besides, the sites on the pseudo edges y = ±l/2 obtainextra on-site potential, i.e., +J for the y = −l/2 sites and -Jfor the y = l/2 sites.A
tually, only when |pkx
| < 1 are the edge states de-�ned in Eq. (5) lo
alized at upper and lower edges. Theon-site ele
tron o

upation de
ays exponentially whenheading into the bulk, whi
h is plotted in Fig. 2. Therequirement |pkx

| < 1 means that kx 
an only be takenbetween the two neighboring Dira
 points, namely, kx ∈
(2π/3

√
3l, 4π/3

√
3l). No edge states exist beyond thisregion.It is pointed out here that only in the large N limit(N → ∞) are the above des
ription for edge states(Eq. (5)) a

urate. However, for �nite N , when kx isnot in the vi
inity of either Dira
 point, namely
N(1 − |pkx

|) ≫ 1, (10)the above des
ription deviates merely negligibly from the

a

urate one.On the other hand, for a Möbius graphene strip with
N regular hexagons along y dire
tion and M (M ≫ N)along x dire
tion (Fig. 1(b)), the Möbius boundary 
on-dition is expli
itly written as

ψa(b)(r) = ψb(a)(r̃ + Lex), (11)where r = (x, y) and r̃ = (x,−y), and ex is the unit ve
-tor along x dire
tion. To make Fourier transformation on
x dire
tion still available, a position-dependent unitarytransformation W : ψa,b → ψα,β

ψα(r) =
1√
2
[ψa(r) − ψb(r̃)]e

i π

L
x, (12a)

ψβ(r) =
1√
2
[ψb(r) − ψa(r̃)]ei π

L
x (12b)for y > 0, and

ψα(r) =
1√
2
[ψa(r) + ψb(r̃)], (13a)

ψβ(r) =
1√
2
[ψb(r) + ψa(r̃)] (13b)for y < 0 is ne
essarily used. It 
an be veri�ed that afterthe transformation the new �eld operators ψα(β)(r) ofthe ele
trons satisfy the periodi
 boundary 
ondition

ψα(β)(r) = ψα(β)(r + Lex). (14)Then the Hamiltonian of the Möbius graphene strip be-
omes H = H0 +H1, where
H0 = − J

∑

<i,j>

′ {
ψ†

α(ri)ψβ(rj) exp[iφ (ri, rj)] +H.c.
}
− J

∑

x

[ψ†
α(x,− l

2
)ψβ(x,

l

2
) +H.c.], (15a)

H1 =J
∑

x

[ψ†
α(x,− l

2
)ψβ(x,

l

2
) +H.c.+ ψ†

α(x,− l

2
)ψα(x,− l

2
) − ψ†

β(x,
l

2
)ψβ(x,

l

2
)], (15b)with

φ (ri, rj) =
π

L
(ri − rj) · exθ(yi), (16)and θ(y) is a step fun
tion. Here the sum ∑′ is takenover all the nearest neighbors ex
ept those whose bondsgo a
ross the y = 0 line.From the above Hamiltonian H , we noti
e that theMöbius strip is divided into two separate generi
 pseudostrips, in
luding y > 0 strip (lower strip ↓) and y < 0strip (upper strip ↑) (see Fig. 3). There is no 
ou-pling between the upper strip and the lower one, andthe y = ±l/2 sites be
ome �pseudo edges� after the

transformation. We should point out that these pseudoedges are not real in the spa
ial 
on�guration of theMöbius strip. A
tually, it follows from Eq. (15a) andEq. (15b) that there is no 
oupling between ψα(x,−l/2)and ψβ(x, l/2) in H while there exist �on-site potential�on the pseudo edges ±Jψ†
α(β)(x,∓l/2)ψα(β)(x,∓l/2). Ithas been proved that no edge states exist on these pseudoedges [23℄. In fa
t, these pseudo edges appear be
ause ofthe di�eren
e in unitary transformation between y > 0and y < 0, and possess no topologi
al features of realedges.As a 
onsequen
e, there is merely one edge state for
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h x dire
tion momentum kx respe
tively on both up-per and lower strips, whose annihilation operators are de�ned as
De↑(kx) =

1√
Skx

2N−1∑

m=N

[p2N−1−m
kx

ψβ(kx, y
(b)
m ) + pm

kx
ψα(kx, y

(a)
m )], (17a)

De↓(kx) =
1√
Skx

N−1∑

m=0

[pm
kx− π

L

ψα(kx, y
(a)
m ) − p2N−1−m

kx− π

L

ψβ(kx, y
(b)
m )], (17b)with 
orresponding energies

Ee↑(kx) =J
p2N

kx
(1 − p2

kx
)

1 − p4N
kx

, (18a)
Ee↓(kx) = − Ee↑(kx − π

L
), (18b)respe
tively.Edge states in the graphene strip play an importantrole in the ele
tron transport. For the monovalent modelof a graphene strip, the Fermi energy is E = 0, aroundwhi
h edge states are highly degenerate. Besides, theenergy band of the edge states is only half �lled and thegraphene strip is a zero-gap 
ondu
tor.III. A UNIFORM ELECTRIC FIELD APPLIEDAS PERTURBATIONIn fa
t, the 
ondu
ting behavior of the graphene strip(Möbius or generi
) under perturbations (e.g., 
aused bya uniform ele
tri
 �eld), is mainly determined by theproperties of its edge states. For the generi
 graphenestrip, a uniform ele
tri
 �eld applied on y dire
tion will
ause a perturbation Hamiltonian

HE = −eE
∑

i

yi[ψ
†
a(ri)ψa(ri) − ψ†

b(r̃i)ψb(r̃i)], (19)where E is the ele
tri
 �eld intensity. We assume herethat the energy di�eren
e introdu
ed by the ele
tri
 �eldon opposite edges of the strip is mu
h smaller than thehopping energy in graphene, namely, 3eENl ≪ J . Be-
ause the energy di�eren
e between edge states and bulkstates with the same kx is mu
h larger than the pertur-bation, transitions between them, indu
ed by the ele
tri
�eld, 
an be negle
ted. Thus we only fo
us on transitionsbetween di�erent edge states in the following dis
ussion.Transition matrix elements between edge states are
〈Ψ±(kx)|HE |Ψ±(k′x)〉 =0, (20a)
〈Ψ±(kx)|HE |Ψ∓(k′x)〉 =ǫkx

δ(kx, k
′
x), (20b)
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(b)

(a)

(c)FIG. 4: (
olor online) (a) Energy spe
trum of a graphenestrip (Möbius or generi
), whose (N,M) = (10, 100), with-out external ele
tri
 �eld. Obviously the edge states betweenthe two Dira
 points (red line) are approximately degener-ate in the energy spe
trum. A s
hemati
 illustration of the
hange in the energy spe
trum is provided in (b) for a generi
graphene strip and (
) for a Möbius graphene strip, whi
his 
aused by the applied uniform ele
tri
 �eld on y dire
tionwhose intensity E satis�es eEl(3N − 1)/2 = 0.15J . Here thered solid line represents the energy level of the edge stateswithout the ele
tri
 �eld, while the green dashed line and theblue dot-dashed line are the 
hanged energy bands of the edgestates in the ele
tri
 �eld. Here, as the dual ve
tor of kx inthe inverse Fourier transformation applied only on the �eldoperators of the edge states, q is analogous to x.where |Ψ±(kx)〉 are edge states for the generi
 graphenestrip de�ned in Eq. (4), and
ǫkx

= −eEl
[
1 +

3

2

(
N

1 + p4N
kx

1 − p4N
kx

− 1

1 − p2
kx

)]
, (20
)with δ(kx, k

′
x) the Krone
ker delta fun
tion. Thus themodi�ed energies of the edge states are
E′

e±(kx) = ±
√
E2

e+(kx) + ǫ2kx
. (21)



5When N is su�
iently large,
ǫkx

≃ ǫ π√
3l

= −1

2
eEl(3N − 1)is approximately independent of momentum kx. Equiva-lently, ǫkx

is approximately a 
onstant in the range of kxwhere edge states exist. Besides, when the ele
tri
 �eldis su�
iently strong but E ≪ J/3eNl still holds, the en-ergy Ee±(kx) of the original edge states approa
hes zeroin 
omparison with |ǫkx
|, namely, |ǫkx

| ≫ Ee+(kx). Inthis sense, we approximately obtain
E′

e±(kx) = ±ǫ π√
3l

. (22)
The above argument means that the originally highlydegenerate energy level of edge states (Ee±(kx) ≃ 0) issplit into two separate energy levels by the uniform ele
-tri
 �eld (see Fig. 4(b)). This result 
ould be simplyinterpreted by the di�erent ele
tri
 potential on the up-per and lower edges. Sin
e a gap exists between the twoenergy levels, the zigzag edges of the graphene strip areno longer 
ondu
tive.We noti
e that the above 
on
lusion is only valid forthe 
ase with generi
 strips. For a Möbius graphene strip,due to its inherent twisted stru
ture, the perturbationHamiltonian introdu
ed by the uniform ele
tri
 �eld on

y dire
tion reads as
H

(M)
E = −eE

∑

i

yi[ψ
†
a(ri)ψa(ri) − ψ†

b(r̃i)ψb(r̃i)] cos
(π
L
xi

)

= −eE
2

2N−1∑

kx,m=0

y(a)
m {[ψ†

α(kx, y
(a)
m )ψβ(kx,−y(a)

m ) +H.c.] + [ψ†
α(kx +

2π

L
, y(a)

m )ψβ(kx,−y(a)
m ) +H.c.]}. (23)Here we have assumed a uniform twist for the stru
tureof the strip. It follows from Eq. (23) that the ele
tri
 �eld
ouples the upper strip with the lower one, and indu
estransitions between states with di�erent kx, making kxno longer 
onserved. For the same reason for a generi
graphene strip, we still negle
t the transition betweenedge states and bulk states. As a 
onsequen
e, we onlyneed to fo
us on the subspa
e spanned by all the edgestates

∣∣Ψ↑(↓)(kx)
〉

= D†
e↑(↓)(kx) |vac〉 . (24)

The transition matrix elements between edge states onthe same pseudo strip vanish, i.e.,
〈
Ψ↑(↓)(kx)

∣∣H(M)
E

∣∣Ψ↑(↓)(k
′
x)
〉

= 0, (25a)while the nonzero matrix elements
〈Ψ↓(k

′
x)|H(M)

E |Ψ↑(kx)〉 = 〈Ψ↑(kx)|H(M)
E |Ψ↓(k

′
x)〉 = ǫ

(M)
kx

[δ(kx, k
′
x) + δ(kx +

2π

L
, k′x)] (25b)des
ribe transitions between edge states on the upperand lower pseudo strips. Here ǫ(M)

kx
= ǫkx

/2, and we havenegle
ted the di�eren
e between pkx
and pkx+2π/L. Still,we approximately obtain

ǫ
(M)
kx

= ǫ
(M)

π√
3l

= −1

4
eEl(3N − 1).Sin
e L is large, kx is approximately 
ontinuous, and alarge number of kx that satisfy Möbius boundary 
ondi-tion exist between the two Dira
 points. The 
on
lusionthat Ee↑/↓(kx) ≃ 0 is still valid for the Möbius graphenestrip when kx is not in the vi
inity of either Dira
 point.Thus, the energies of the edge states in the presen
e of

the uniform ele
tri
 �eld are
E′

q = ±2ǫ
(M)

π√
3l

cos
(π
L
q
)
, (26)where q is dual ve
tor of kx in the inverse Fourier trans-formation. It 
ould be 
on
luded that the originallyhighly degenerate energy level Ee↑/↓(kx) = 0 is broad-ened, by the uniform ele
tri
 �eld, into an energy bandwith width 4ǫ

(M)

π/
√

3l
(shown in Fig. 4(
)). A straightfor-ward explanation for the energy band broadening is thatthe ele
tri
 potential on the edge of the Möbius stripvaries along the x dire
tion.It is important to point out that there exist no en-ergy gap for a Möbius graphene strip. The zigzag edge
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..

FIG. 5: (
olor online) The density of state (DOS) near
ǫ = 0 is obtained by dedu
ing the retarded Green's fun
-tion G(ǫ) = (ǫ − H + iη)−1 of the graphene strip with
η = 0.01J and (N,M) = (10, 100), and determining the spe
-tral fun
tion A(ǫ) = −2ImG(ǫ). The bla
k solid line, thegreen dashed line and the blue dash-dotted line represent theDOS of a graphene strip (Möbius or generi
) without ele
tri
�eld, a generi
 graphene strip with uniform ele
tri
 �eld, anda Möbius graphene strip with uniform ele
tri
 �eld, respe
-tively.is still 
ondu
tive even in presen
e of an external ele
tri
�eld. A Möbius graphene strip with su
h typi
al featureis referred to as a topologi
al insulator. Numeri
al 
al
u-lations for the density of states (DOS) near ǫ = 0 (Fig. 5)obviously support the above theoreti
al predi
tions. TheDOS-energy 
urve expli
itly demonstrates the existen
eof edge states in the vi
inity of ǫ = 0 when no externalele
tri
 �eld is applied. In this 
ase, for both the generi
and Möbius graphene strips, there is only one peak 
en-tered exa
tly at ǫ = 0, indi
ating high degenera
y ofedge states. When uniform ele
tri
 �eld is applied on ageneri
 graphene strip, the peak turns to two peaks 
en-tered at ±ǫπ/

√
3l, respe
tively, meaning that the highlydegenerate energy level is split by the ele
tri
 �eld. Inthis 
ase, the DOS at ǫ = 0 approximately equals to zero,indi
ating the existen
e of a gap. Contrarily, with ele
-tri
 �eld applied on a Möbius graphene strip, the DOShas apparently nonzero value for any ǫ between ±ǫπ/

√
3l.This numeri
al result agrees well with our above analyt-i
al predi
tion about the energy spe
trum of generi
 andMöbius strips with and without external ele
tri
 �eld,and indi
ates that the Möbius graphene strip is a topo-logi
al insulator, but a generi
 strip is not.IV. NON-ABELIAN GAUGE FIELD ANDOBSERVABLE EFFECTS IN TRANSMISSIONIn this se
tion, we study the transportation proper-ties of ele
trons in the Möbius graphene strip to demon-

I
Φ

FIG. 6: (
olor online) S
hemati
 illustration of a Möbiusgraphene ring with two leads 
onne
ted to its opposite sidesand an external magneti
 �ux ΦI thread its 
enter.strate the topologi
al e�e
ts similar to that for Möbiusladders [10℄. By 
omparing the Hamiltonian Eq. (15a) ofa Möbius graphene strip with that of a generi
 graphenestrip, it is re
ognized that, in the Möbius graphene strip,there is a phase shift on the hopping 
onstant for thenearest neighbors 〈i, j〉 whose relative ve
tors ri−rj havenonzero x 
omponent. Similar to the 
ase of the Möbiusladder, this phase shift in Eq. (16) 
an be des
ribed interms of a non-Abelian gauge �eld
A(r) = (Ax, Ay) = (

c~π

eL
, 0)θ(y)in the 
ontinuous limit. The presen
e of this gauge �eld
hanges the 
anoni
al momentum p into p+ eA(r). Thegauge �eld only exists in the lower strip, to result inan e�e
tive magneti
 �ux Φ = ch/2e along the positive

y dire
tion thread the 
enter of the lower strip, whi
his bent into a ring. Thus when an ele
tron travels oneround along the lower strip, su
h a gauge �eld may bringabout a phase shift π. This e�e
t 
ould be experimen-tally testable when leads are 
onne
ted on opposite sidesof the strip (see Fig. 6). Then, there would be no trans-mission between two leads through the lower strip, dueto the destru
tive interferen
e between ele
trons passingthrough two possible paths from one lead to the other.Su
h destru
tive interferen
e is analogous to that in theusual Aharonov-Bohm e�e
t [25, 26℄. However, this phe-nomenon in our system is totally indu
ed by non-trivialtopology, instead of a real magneti
 �ux.To demonstrate the non-Abelian nature of the gauge�eld more 
learly, we only 
onsider the spe
ial graphenestrip with only one regular hexagon along y dire
tion(N = 1), whi
h is simply an aromati
 hydro
arbon 
hain(see Fig. 6). There are 4 possible values of y in the latti
eof this strip, y = ±l/2 and y = ±l respe
tively. Thespinor representation of ele
trons in a regular hexagonlatti
e is
Ψ(x) =




ψa(x)
ψb(x)
ψ′

a(x)
ψ′

b(x)


 ≡




ψa(x+
√

3
2 l, l)

ψb(x,
l
2 )

ψa(x,− l
2 )

ψb(x +
√

3
2 l,−l)


 , (27)



7where we have negle
ted di�eren
es in the x 
oordinatesbetween �eld operators and the y 
oordinates have beenomitted. Performing the unitary transformation W on
Ψ(x) , we have

Ψ̃(x) = WΨ(x) =
1√
2




(ψa(x) − ψ′
b(x))e

i π

L
x

(ψb(x) − ψ′
a(x))ei π

L
x

ψ′
a(x) + ψb(x)
ψ′

b(x) + ψa(x)


 . (28)It 
an be veri�ed that Ψ̃(x) is a periodi
 fun
tion sin
e

Ψ̃(x + L) = Ψ̃(x). Then the Hamiltonian of the Möbiusgraphene strip be
omes
H = −J

∑

x

Ψ̃†(x)UΨ̃(x) + [Ψ̃†(x)T Ψ̃(x+
√

3l) +H.c.]

= −J
∑

kx

Ψ̃†(kx)[U + (Tei
√

3kxl +H.c.)]Ψ̃(kx), (29)where
U =




0 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 0


 ,

T =




0 e−i π

M 0 0
0 0 0 0
0 0 0 0
0 0 1 0


 ,and

Ψ̃(kx) =
1√
M

∑

x

Ψ̃(x)e−ikxx.In the 
ontinuous limit, the above Hamiltonian be-
omes
H =

∫ 2π

0

dϕΨ̃†(ϕ){v[R(−i ∂
∂ϕ

) −A0] +R0}Ψ̃(ϕ), (30)where ϕ = 2πx/L, v = 2π
√

3lJ/L, R = diag[−σy, σy](σy is the Pauli matrix), A0 =diag[σy/2, 0], and R0 = Jdiag[0, 1,−1, 0]. We would like to point out that in the
ontinuous limit, we have expanded the original Hamil-tonian in the kx representation around kx = π/
√

3l. Be-
ause A0 does not 
ommute with R0, A0 is regarded as anon-Abelian gauge �eld. A
tually, the observable e�e
tof the non-Abelian gauge �eld 
an be expli
itly demon-strated when the strip has small width, sin
e in this 
ase,a graphene strip may have distin
t energy bands insteadof strongly overlapped ones.To obtain the transmission spe
trum, we 
al
ulate the
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FIG. 7: (
olor online) (a) and (b) show the transmission spe
-tra of a generi
 graphene strip and a Möbius graphene strip,respe
tively, both of whose parameters (N,M) = (1, 40).Comparing (b) with (a), we �nd that several peaks in thetransmission spe
trum of the generi
 graphene strip are miss-ing in that of the Möbius graphene strip, due to the existen
eof a non-Abelian gauge �eld in the latter one.self energy [24℄
ΣL(k′x, kx) = − J ′

2
ei

√
3k′

x
l




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 , (31a)

ΣR(k′x, kx) = − J ′

2
ei(

√
3k′

x
l+ 1

2
kxL)




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 (31b)in the matrix representation (a
tually the whole matrixis a 4M × 4M one made up of M2 above 4 × 4 blo
kswith respe
tive (k′x, kx)), and J ′ is the hopping energy inthe leads (J ′ = 1.5J in our numeri
al 
al
ulation). Theabove self energy results from the 
onne
tion of two leadsto the strip. Then we obtain the e�e
tive retarded Greenfun
tion of the graphene strip

G(E(k)) =
1

E(k) −H + iη − ΣL − ΣR
, (32)where E(k) = −2J ′ cos(

√
3kl) is the energy of ele
tronsinje
ted through the left lead, and η = 0+. After we de-termine the level broadening matrix ΓL,R = −2ImΣL,R,the transmission 
oe�
ient

T (E(k)) = Tr[ΓRG(E(k))ΓLG
†(E(k))] (33)is obtained in a straightforward way. The transmis-sion spe
trum of a generi
 graphene strip and a Möbiusgraphene strip (both width are N = 1) are displayedin Fig. 7 (a) and (b), respe
tively. It is illustrated byFig. 7(b) that in
ident ele
trons with energy E ∈ [−J, 0]are totally re�e
ted by the Möbius graphene strip. Thisnumeri
al result just 
on�rm our heuristi
 predi
tion.
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FIG. 8: (
olor online) (a) and (b) show the transmis-sion spe
tra of a Mö bius graphene ring, whose parameters
(N,M) = (1, 40), with an external magneti
 �ux ΦI = nΦ0/2thread its 
enter, where n is an integer. (a) 
orresponds tothe n =even 
ase, and (b) 
orresponds to the n =odd 
ase,between whi
h there are obvious di�eren
es in the position ofthe peaks in the transmission spe
trum.Sin
e the non-Abelian gauge �eld exists in the lowerstrip instead of the upper one, there is a possible wayto manipulate the transmission properties of the Möbiusgraphene strip through an external magneti
 �ux. Asa magneti
 �ux ΦI is applied thread the 
enter of theMöbius strip (whi
h has the shape of a ring), a mag-neti
 ve
tor potential appears on both the upper andlower pseudo strips. When the magneti
 �ux ΦI is halfof integer magneti
 �ux quanta, i.e., ΦI = nΦ0/2 with
Φ0 = ch/e (n = 1, 2, ...), the total e�e
tive magneti
 �uxin the lower strip be
omes (n+ 1)Φ0/2 and in the upperstrip it be
omes nΦ0/2. Consequently, when n is even,quantum transmission is still suppressed in the lowerstrip, due to the destru
tive interferen
e of ele
tronspassing through two possible paths along the Möbiusring. Without su
h destru
tive interferen
e, quantumtransmission is allowed in the upper strip in this 
ase.However, when n is odd, quantum transmission is al-lowed in the lower strip and suppressed in the upper one.Based on the above dis
ussion, 
hanges in the positionsof the peaks in the transmission spe
trum are expe
tedto be experimentally observed when the external mag-neti
 �ux 
hanges. Numeri
al 
al
ulations, illustratedin Fig. 8, 
learly verify our above heuristi
 dis
ussions.Therefore, this magneti
-�ux-based operation obviouslyimplements quantum manipulation for ele
tron transportin this Möbius nanostru
ture.Next, we further 
onsider the quantum transport ofele
trons in the low energy ex
itation regime. A
tually,these ele
trons lo
ate in the energy band of the edgestates. The energies of edge states in both the lowerand upper strips (see Fig. 3) are 
lose to the Fermi levelof the system. Here, the energies of the lower edge statesare below the Fermi level, thus these edge states are allo

upied at zero temperature. Contrarily, the upper edge
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FIG. 9: (
olor online) S
hemati
 illustration of quantumtransmission in a Möbius graphene ring with two leads 
on-ne
ted to its opposite sides and an external magneti
 �ux
ΦI = nΦ0/2 thread its 
enter. Here, the up and down ar-rows represent the edge states in the upper and lower pseudostrips of the Möbius strip (see Fig. 3). (a) When n =even,the only 
urrent 
arriers are ele
trons o

upying upper edgestates above the Fermi level (red dots). (b) When n =odd,the only 
urrent 
arriers are holes in the energy band of loweredge states below the Fermi level (light yellow dots).states are not o

upied at zero temperature, sin
e theireigenenergies are above the Fermi level.When there are an integer number of �ux quantathread the Möbius ring (n=even in the above dis
ussion),or there exists no external magneti
 �ux thread the ring,the fa
t that quantum transmission is forbidden in thelower strip means that holes below the Fermi level 
annotbe 
urrent 
arriers. Then the only 
urrent 
arriers in theMöbius ring between two leads are ele
trons o

upyingthe upper edge states (see Fig. 9(a)). Oppositely, whenthe number of �ux quanta thread the ring is half-integer(n=odd in the above dis
ussion), quantum transmissionis forbidden in the upper strip. In this 
ase, holes of thelower strip right below the Fermi level, instead of ele
-trons o

upying the upper edge states, be
ome 
urrent
arriers between the two leads (see Fig. 9(b)). Moreover,if the ele
tron-ele
tron and ele
tron-phonon intera
tions
ould not be ignored in the Möbius graphene strip, thetransmission rate of ele
trons and holes would be di�er-ent signi�
antly. Thus, a

ompanying the swit
h of 
ur-rent 
arriers between ele
trons and holes, transmissionrate in the Möbius graphene strip may 
hange as well.Finally, we remark on the e�e
t of ele
tri
 �eld on thetransmission properties of the Möbius graphene strip.The uniform y dire
tion ele
tri
 �eld applied to theMöbius graphene strip 
an indu
e strong 
oupling be-tween ele
trons in the lower and upper strips. In this
ase, both of the strips 
an 
ontribute signi�
antly toquantum transmission. Therefore, the above forbiddentransmission in one of the two pseudo strips no longeremerges in this 
ase.



9V. CONCLUSIONOriented by physi
al realizations of topologi
al insu-lators and topologi
al quantum devi
es, we theoreti
allystudied the ele
troni
 properties of the Möbius graphenestrip, whi
h is an exoti
 2D ele
tron system with a topo-logi
ally non-trivial edge. Various properties of the edgestates were investigated through the tight binding modelin this paper. We also studied the robustness of edgestates in the Möbius graphene strip under perturbations,su
h as that 
aused by a uniform ele
tri
 �eld. Analyti
alresults about the exoti
 natures of su
h ele
tron systemare obtained for the �rst time and then 
on�rmed by thefollowing numeri
al 
al
ulations. Moreover, the physi-
al e�e
ts of the non-Abelian indu
ed gauge stru
ture inthe Möbius graphene strip were studied by 
onsideringthe transmission spe
trum of the Möbius graphene stripwith two leads 
onne
ted to its opposite sides. Based onsu
h non-Abelian indu
ed gauge �eld dis
overed, whi
h is

similar to that for the Möbius mole
ular devi
es studiedin Ref. [10℄, we proposed a possible manipulation me
h-anism for the Möbius graphene strip through a magneti
�ux. In fa
t, the robust edge of the Möbius graphenestrip and the non-Abelian indu
ed gauge �eld are two
hara
teristi
 demonstrations of the nontrivial topologyof the Möbius graphene strip. The above 
hara
ters makethe Möbius graphene strip as a 
andidate for topologi
alinsulators, whi
h may bene�t future appli
ations in quan-tum 
oherent devi
es, and quantum information pro
ess-ing. A
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